Angiosperms are the most diversi ed plant group in the world, being represented by ca 300,000 species in about 400 families. Like all of Life, including ourselves, they have had their own history and gone through many evolutionary stages before they arrived at their current forms. The origin of Angiospermae ( owering plants) has been the subject of much dispute because this is a key event in the history of life, and has a far-reaching in uence on our understanding of relationships among seed plants as a whole as well as within the angiosperms. Until recently most of palae- otanists recognized angiosperms only from the Cretaceous and younger strata. This contradicts the results of molecular analyses. I have been working on Mesozoic fossil plants for the past two decades, during which time I have studied a number of fossil plants. Some of these fossil plants have been published as Jurassic angiosperms, and, unsurprisingly, many questions and doubts have been raised about them. These questions need to be addressed se- ously and journal papers do not provide suf cient space to compare and relate these early angiosperms. In this book these pioneer angiosperms are documented in detail, sometimes with new specimens not studied before. Also, I propose a de nition of angiosperms that could be adopted in palaeobotany. My aim is to improve clarity and objectivity of judgment about what constitutes a fossil angiosperm.
This brief proposes that the keys to internet cross-layer optimization are the development of non-standard implicit primal-dual solvers for underlying optimization problems, and design of jointly optimal network protocols as decomposition of such solvers. Relying on this novel design-space oriented approach, the author develops joint TCP congestion control and wireless-link scheduling schemes for wireless applications over Internet with centralized and distributed (multi-hop) wireless links. Different from the existing solutions, the proposed schemes can be asynchronously implemented without message passing among network nodes; thus they are readily deployed with current infrastructure. Moreover, global convergence/stability of the proposed schemes to optimal equilibrium is established using the Lyapunov method in the network fluid model. Simulation results are provided to evaluate the proposed schemes in practical networks.
This book presents essential new insights in research and applications concerning spatial information technologies and coastal disaster prevention modeling for oceanic and coastal regions. As a new research domain of Digital Earth, it covers the latest scientific and technical advances, from the acquisition and integration of observational data, ocean spatio-temporal analysis and coastal flood forecasting to frequency modeling and the development of technical platforms. The individual chapters will be of interest to specialists in oceanic and coastal monitoring and management who deal with aspects of data integration, sharing, visualization, and spatio-temporal analysis from a Digital Earth perspective.
This book gathers papers presented at the 10th International Conference on Genetic and Evolutionary Computing (ICGEC 2016). The conference was co-sponsored by Springer, Fujian University of Technology in China, the University of Computer Studies in Yangon, University of Miyazaki in Japan, National Kaohsiung University of Applied Sciences in Taiwan, Taiwan Association for Web Intelligence Consortium, and VSB-Technical University of Ostrava, Czech Republic. The ICGEC 2016, which was held from November 7 to 9, 2016 in Fuzhou City, China, was intended as an international forum for researchers and professionals in all areas of genetic and evolutionary computing.
Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others.
This book is intended for researchers, scientists, engineers and postgraduates or above with interests in robotics and advanced machine tools technology such as parallel kinematics machines (PKMs).
Xinjun Liu and Jinsong Wang, professors, work at The Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University.
Primary liver cancer is the third most deadly and fifth most common cancer worldwide (~500,000 deaths annually), with a sharp increase of incidence in the United States in recent years. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the major types of primary liver cancer. Risk factors include gender, hepatitis B virus (HBV), hepatitis C virus (HCV), cirrhosis, metabolism diseases, diabetes, obesity, toxins, excess alcohol consumption and smoking. Liver cancer arises most frequently in inflammatory livers with extensive oxidative stress due to viral hepatitis which causes over 80% of HCC cases worldwide. Currently, survival remains dismal for most HCC and CC patients, largely due to the tumor's aggressiveness at the time of diagnosis and the lack of effective therapy.
This book examines innovation in the fields of computer engineering and networking, and explores important, state-of-the-art developments in areas such as artificial intelligence, machine learning, information analysis and communication. It gathers papers presented at the 8th International Conference on Computer Engineering and Networks (CENet2018), held in Shanghai, China on August 17-19, 2018. o Explores emerging topics in computer engineering and networking, along with their applications o Discusses how to improve productivity by using the latest advanced technologies o Examines innovation in the fields of computer engineering and networking
This book outlines various synthetic approaches, tuneable physical properties, and device applications of core/shell quantum dots (QDs). Core/shell QDs have exhibited enhanced quantum yield (QY), suppressed photobleaching/blinking, and significantly improved photochemical/physical stability as compared to conventional bare QDs. The core-shell structure also promotes the easy tuning of QDs' band structure, leading to their employment as attractive building blocks in various optoelectronic devices. The main objective of this book is to create a platform for knowledge sharing and dissemination of the latest advances in novel areas of core/shell QDs and relevant devices, and to provide a comprehensive introduction and directions for further research in this growing area of nanomaterials research.
This book uses the concept of the region to introduce traditional Chinese villages in ten typical areas. Most of the villages have been included in the World Cultural Heritage List or the Tentative List and reflect the diversity of rural and traditional life. Richly illustrated with pictures of architectural decorations, dwellings, day-to-day country life and aerial views of settlements, it not only enhances readers' knowledge of China's traditional architectural culture but also provides inspiration for architectural creation. It is a valuable resource for graduate students, lecturers and researchers in the field of traditional villages, heritage conservation and Chinese architectural culture.
This book presents a comprehensive overview of state-of-the-art quantum dot photodetectors, including device fabrication technologies, optical engineering/manipulation strategies, and emerging photodetectors with building blocks of novel quantum dots (e.g. perovskite) as well as their hybrid structured (e.g. 0D/2D) materials. Semiconductor quantum dots have attracted much attention due to their unique quantum confinement effect, which allows for the facile tuning of optical properties that are promising for next-generation optoelectronic applications. Among these remarkable properties are large absorption coefficient, high photosensitivity, and tunable optical spectrum from ultraviolet/visible to infrared region, all of which are very attractive and favorable for photodetection applications. The book covers both fundamental and frontier research in order to stimulate readers' interests in developing novel ideas for semiconductor photodetectors at the center of future developments in materials science, nanofabrication technology and device commercialization. The book provides a knowledge sharing platform and can be used as a reference for researchers working in the fields of photonics, materials science, and nanodevices.
This book disseminates and promotes the recent research progress and frontier development on AutoML and meta-learning as well as their applications on computer vision, natural language processing, multimedia and data mining related fields. These are exciting and fast-growing research directions in the general field of machine learning. The authors advocate novel, high-quality research findings, and innovative solutions to the challenging problems in AutoML and meta-learning. This topic is at the core of the scope of artificial intelligence, and is attractive to audience from both academia and industry.
This book is highly accessible to the whole machine learning community, including: researchers, students and practitioners who are interested in AutoML, meta-learning, and their applications in multimedia, computer vision, natural language processing and data mining related tasks. The book is self-contained and designed for introductory and intermediate audiences. No special prerequisite knowledge is required to read this book.
This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers.
This book is concerned with the fault estimation problem for network systems. Firstly, to improve the existing adaptive fault estimation observer, a novel so-called intermediate estimator is proposed to identify the actuator or sensor faults in dynamic control systems with high accuracy and convergence speed. On this basis, by exploiting the properties of network systems such as multi-agent systems and large-scale interconnected systems, this book introduces the concept of distributed intermediate estimator; faults in different nodes can be estimated simultaneously; meanwhile, satisfactory consensus performances can be obtained via compensation based protocols. Finally, the characteristics of the new fault estimation methodology are verified and discussed by a series of experimental results on networked multi-axis motion control systems. This book can be used as a reference book for researcher and designer in the field of fault diagnosis and fault-tolerant control and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities.