Structural Adhesives Uniquely provides up-to-date and comprehensive information on the topic in an easily-accessible form. A structural adhesive can be described as a high-strength adhesive material that is isotropic in nature and bonds two or more parts together in a load-bearing structure. A structural adhesive material must be capable of transmitting the stress/load without loss of structural integrity within design limits. There are many types of established structural adhesives, including epoxy, urethane, acrylic, silicone, etc. Structural Adhesives comprises nine chapters and is divided into two parts: Part 1, Preparation, Properties, and Characterization; Part 2, Applications. The topics covered include: structural epoxy adhesives; biological reinforcement of epoxies as structural adhesives; marble dust reinforced epoxy structural adhesive composites; characterization of various structural adhesive materials; effects of shear and peel stress distributions on the behavior of structural adhesives; the inelastic response of structural aerospace adhesives; structural reactive acrylic adhesives: their preparation, characterization, properties, and applications; application of structural adhesives in composite connections; and naval applications of structural adhesives. Audience This book should be of much use and interest to adhesionists, materials scientists, adhesive technologists, polymer scientists, and those working in the construction, railway, automotive, aviation, bridge, and shipbuilding industries.
The book features selected high-quality papers presented at the International Conference on Computing, Power and Communication Technologies 2019 (GUCON 2019), organized by Galgotias University, India, in September 2019. Divided into three sections, the book discusses various topics in the fields of power electronics and control engineering, power and energy systems, and machines and renewable energy. This interesting compilation is a valuable resource for researchers, engineers and students.
This timely book on structural adhesives joints showcases all the pertinent topics and will be of immense value to scientists and engineers in many industries. Most structures are comprised of a number of individual parts or components which have to be connected to form a system with integral load transmission path. The structural adhesive bonding represents one of the most enabling technologies to fabricate most complex structural configurations involving advanced materials (e.g. composites) for load-bearing applications. Quite recently there has been a lot of activity in harnessing nanotechnology (use of nanomaterials) in ameliorating the existing or devising better performing structural adhesives. The 10 chapters by subject matter experts look at the following issues: Surface preparation for structural adhesive joints (SAJ) Use of nanoparticles in enhancing performance of SAJ Optimization of SAJ Durability aspects of SAJ Debonding of SAJ Fracture mechanics of SAJ Failure analysis of SAJ Damage behavior in functionally graded SAJ Impact, shock and vibration characteristics of composites for SAJ Delamination arrest methods in SAJ
This book describes the Hamilton-Jacobi formalism of quantum mechanics, which allowscomputation of eigenvalues of quantum mechanical potential problems without solving for thewave function. The examples presented include exotic potentials such as quasi-exactly solvablemodels and Lame an dassociated Lame potentials. A careful application of boundary conditionsoffers an insight into the nature of solutions of several potential models. Advancedundergraduates having knowledge of complex variables and quantum mechanics will find thisas an interesting method to obtain the eigenvalues and eigen-functions. The discussion oncomplex zeros of the wave function gives intriguing new results which are relevant foradvanced students and young researchers. Moreover, a few open problems in research arediscussed as well, which pose a challenge to the mathematically oriented readers.