This book presents efficient and practical methods for the synthesis of various functionalized organic molecules from haloalkynes through different reaction processes such as cross-coupling reactions, nucleophilic additions and cycloadditions. It consists of four chapters demonstrating interesting examples of these transformations, and showcasing the synthetic power of haloalkynes for rapid assembly of complex molecular structures. Most of the protocols allow multiple bond-forming events to occur in a single operation, offering opportunities to advance chemical synthesis and address the increasing demands for green and sustainable chemistry. It also presents a wide range of functionalized products, including many synthetically useful conjugated cyclic and acyclic structures that have potential applications in materials science, chemical biology and natural product synthesis. This book is a valuable reference not only for organic chemists, but also for biologists and materials scientists involved in the modern synthesis of organic compounds and materials.
Huanfeng Jiang and Wanqing Wu are both Professors at the School of Chemistry and Chemical Engineering, South China University of Technology, China.
Chuanle Zhu is a Postdoctoral Fellow at the School of Chemistry and Chemical Engineering, South China University of Technology, China.
This book is a comprehensive introduction to nanoscale materials for sensor applications, with a focus on connecting the fundamental laws of physics and the chemistry of materials with device design. Nanoscale sensors can be used for a wide variety of applications, including the detection of gases, optical signals, and mechanical strain, and can meet the need to detect and quantify the presence of gaseous pollutants or other dangerous substances in the environment. Gas sensors have found various applications in our daily lives and in industry. Semiconductive oxides, including SnO2, ZnO, Fe2O3, and In2O3, are promising candidates for gas sensor applications. Carbon nanomaterials are becoming increasingly available as "off-the-shelf" components, and this makes nanotechnology more exciting and approachable than ever before. Nano-wire based field- effect transistor biosensors have also received much attention in recent years as a way to achieve ultra-sensitive and label-free sensing of molecules of biological interest. A diverse array of semiconductor-based nanostructures has been synthesized for use as a photoelectrochemical sensor or biosensor in the detection of low concentrations of analytes. A novel acoustic sensor for structural health monitoring (SHM) that utilizes lead zirconate titanate (PZT) nano- active fiber composites (NAFCs) is described as well.
Action recognition is an enabling technology for many real world applications, such as human-computer interaction, surveillance, video retrieval, retirement home monitoring, and robotics. In the past decade, it has attracted a great amount of interest in the research community. Recently, the commoditization of depth sensors has generated much excitement in action recognition from depth sensors. New depth sensor technology has enabled many applications that were not feasible before. On one hand, action recognition becomes far easier with depth sensors. On the other hand, the drive to recognize more complex actions presents new challenges.One crucial aspect of action recognition is to extract discriminative features. The depth maps have completely different characteristics from the RGB images. Directly applying features designed for RGB images does not work.Complex actions usually involve complicated temporal structures, human-object interactions, and person-person contacts. New machine learning algorithms need to be developed to learn these complex structures.This work enables the reader to quickly familiarize themselves with the latest research in depth-sensor based action recognition, and to gain a deeper understanding of recently developed techniques. It will be of great use for both researchers and practitioners who are interested in human action recognition with depth sensors.The text focuses on feature representation and machine learning algorithms for action recognition from depth sensors. After presenting a comprehensive overview of the state of the art in action recognition from depth data, the authors then provide in-depth descriptions of their recently developed feature representations and machine learning techniques, including lower-level depth and skeleton features, higher-level representations to model the temporal structure and human-object interactions, and feature selection techniques for occlusion handling.
The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of various quantum dot solar cell designs, including quantum dot intermediate band solar cells, hot electron quantum dot solar cells, quantum-dot sensitized solar cells, colloidal quantum dot solar cells, hybrid polymer-quantum dot solar cells, and MEG quantum dot solar cells. Both theoretical and experimental approaches are described. Quantum Dot Solar Cells helps to connect the fundamental laws of physics and the chemistry of materials with advances in device design and performance. The book can be recommended for a broad audience of chemists, electrical engineers, and materials scientists, and is suitable for use in courses on materials and device design for advanced and future optoelectronics.
A quantum dot molecule (QDM) is composed of two or more closely spaced quantum dots or "artificial atoms." In recent years, QDMs have received much attention as an emerging new artificial quantum system. The interesting and unique coupling and energy transfer processes between the "artificial atoms" could substantially extend the range of possible applications of quantum nanostructures. This book reviews recent advances in the exciting and rapidly growing field of QDMs via contributions from some of the most prominent researchers in this scientific community. The book explores many interesting topics such as the epitaxial growth of QDMs, spectroscopic characterization, and QDM transistors, and bridges between the fundamental physics of novel materials and device applications for future information technology. Both theoretical and experimental approaches are considered. Quantum Dot Molecules can be recommended for electrical engineering and materials science department courses on the science and design of advanced and future electronic and optoelectronic devices.
A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.
This book presents a comprehensive overview of state-of-the-art quantum dot photodetectors, including device fabrication technologies, optical engineering/manipulation strategies, and emerging photodetectors with building blocks of novel quantum dots (e.g. perovskite) as well as their hybrid structured (e.g. 0D/2D) materials. Semiconductor quantum dots have attracted much attention due to their unique quantum confinement effect, which allows for the facile tuning of optical properties that are promising for next-generation optoelectronic applications. Among these remarkable properties are large absorption coefficient, high photosensitivity, and tunable optical spectrum from ultraviolet/visible to infrared region, all of which are very attractive and favorable for photodetection applications. The book covers both fundamental and frontier research in order to stimulate readers' interests in developing novel ideas for semiconductor photodetectors at the center of future developments in materials science, nanofabrication technology and device commercialization. The book provides a knowledge sharing platform and can be used as a reference for researchers working in the fields of photonics, materials science, and nanodevices.
Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications.The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.